Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(36): 14886-14895, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37650354

RESUMO

Plasmonic hybrids are regarded as promising candidates for water purification due to their structure-dependent photocatalysis and photothermal performance. It remains a challenge to develop materials that possess these two characteristics for efficient water purification. Herein, plasmonic Ti3C2Tx/Bi2S3 two-dimensional (2D)/2D hybrids were prepared for efficient solar-driven water purification via the combination of photothermal conversion and photocatalysis. Benefitting from broad light absorption, large 2D/2D interfaces, and efficient charge transfer, the binary hybrids showed high-efficiency photothermal conversion and photothermal-assisted photocatalytic activity. By depositing these 2D/2D hybrids on a hydrophilic and porous cotton piece, the Ti3C2Tx/Bi2S3 membrane displayed a high water evaporation rate and solar-to-vapor efficiency under one-sun irradiation. The solar-driven evaporation of seawater, heavy metal ion solution, and dye solution jointly indicated that the plasmonic membrane shows great potential for drinkable water generation and industrial wastewater treatment. Most importantly, the synergistic effect of photothermal evaporation and photocatalysis of the Ti3C2Tx/Bi2S3 membrane on water purification was demonstrated. The polluted water can not only be treated by evaporation, but also be degraded via photocatalysis under solar light irradiation. This work provides new insight into designing functional materials for water purification based on the combination of photothermal conversion and photocatalysis.

2.
ACS Appl Mater Interfaces ; 12(34): 38554-38562, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846467

RESUMO

Au nanoingots, on which an Au nanosphere is accurately placed in an open Au shell, are synthesized through a controllable hydrothermal method. The prepared Au nanoingots exhibit an adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, and prominent photocatalytic and SERS performances. Au nanoingots exhibit two resonance peaks in the extinction spectrum, one (around 550 nm) is ascribed to electric dipole resonance coming from the central Au, and the other one (650-800 nm) is ascribed to the magnetic dipole resonance originating from the open Au shell. Numerical simulations verify that the intense electric and magnetic fields locate in the bowl-shaped nanogap between the Au nanosphere and shell, and they can be further optimized by changing the size of the outer Au shell. Au nanoingots with the largest shell have the strongest electric field because of large-area plasmon coupling, while Au nanoingots with the largest shell opening size have the strongest magnetic field. As a result, the structure-adjustable Au nanoingots show a high tunability and enhancement of catalytic reduction of p-nitrophenol and SERS detection of Rhodamine B. Specially, Au nanoingots with the largest shell size exhibit the highest catalytic activity and Raman signals at 532 nm excitation. However, Au nanoingots with the largest shell opening size have the highest photocatalytic activity with light irradiation (λ > 420 nm) and exhibit the best SERS performance at 785 nm excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...